monthly_average¶
-
hydrostats.data.
monthly_average
(merged_data)¶ Calculates monthly seasonal averages of the timeseries data in a DataFrame
Parameters: merged_data (DataFrame) – A pandas DataFrame with a datetime index and columns containing float type values. Returns: A pandas dataframe with a string type index of date representations and the monthly seasonal averages as float values in the columns. Return type: DataFrame Examples
>>> import hydrostats.data as hd >>> import pandas as pd >>> pd.options.display.max_rows = 15
The data URLs contain streamflow data from two different models, and are provided from the Hydrostats Github page
>>> sfpt_url = r'https://github.com/waderoberts123/Hydrostats/raw/master/Sample_data/sfpt_data/magdalena-calamar_interim_data.csv' >>> glofas_url = r'https://github.com/waderoberts123/Hydrostats/raw/master/Sample_data/GLOFAS_Data/magdalena-calamar_ECMWF_data.csv' >>> merged_df = hd.merge_data(sfpt_url, glofas_url, column_names=('Streamflow Prediction Tool', 'GLOFAS'))
>>> hd.monthly_average(merged_df) Streamflow Prediction Tool GLOFAS 01 5450.558878 6085.033102 02 4178.249788 4354.072332 03 4874.788452 4716.785701 04 7682.920219 7254.073875 05 13062.175899 11748.583189 06 12114.431105 11397.032335 07 9461.472599 9598.017209 08 8802.643954 8708.876388 09 10358.254219 9944.071882 10 12968.474415 12671.180449 11 13398.111010 13355.019167 12 9853.288608 10275.652887