daily_average¶
-
hydrostats.data.
daily_average
(df, rolling=False, **kwargs)¶ Calculates daily seasonal averages of the timeseries data in a DataFrame
Parameters: - df (DataFrame) – A pandas DataFrame with a datetime index and columns containing float type values.
- rolling (bool) – If True, will calculate the rolling seasonal average.
- **kwargs (pandas.DataFrame.rolling() properties, optional) – Options for how to compute the rolling averages. If not provided, the default is to use the following parameters: {window=6, min_periods=1, center=True, closed=”right”}. Specifying **kwargs will clear the defaults, however.
Returns: A pandas dataframe with a string type index of date representations and the daily seasonal averages as float values in the columns.
Return type: DataFrame
Examples
>>> import hydrostats.data as hd >>> import pandas as pd >>> pd.options.display.max_rows = 15
The data URLs contain streamflow data from two different models, and are provided from the Hydrostats Github page
>>> sfpt_url = r'https://github.com/waderoberts123/Hydrostats/raw/master/Sample_data/sfpt_data/magdalena-calamar_interim_data.csv' >>> glofas_url = r'https://github.com/waderoberts123/Hydrostats/raw/master/Sample_data/GLOFAS_Data/magdalena-calamar_ECMWF_data.csv' >>> merged_df = hd.merge_data(sfpt_url, glofas_url, column_names=('Streamflow Prediction Tool', 'GLOFAS'))
>>> hd.daily_average(merged_df) Streamflow Prediction Tool GLOFAS 01/01 7331.305278 7676.792460 01/02 7108.640746 7753.671798 01/03 6927.147740 7631.900453 01/04 6738.162886 7483.029897 01/05 6552.914171 7316.004227 01/06 6388.213829 7154.650963 01/07 6258.418600 7012.279722 ... ... 12/25 8321.367143 8948.101821 12/26 8149.313143 8903.544978 12/27 7994.357429 8807.690639 12/28 7872.819143 8642.877365 12/29 7791.741143 8435.175677 12/30 7729.451143 8225.315074 12/31 7656.042286 8041.918136 [366 rows x 2 columns]